

Why are the Andreae®Filters better than all copies?

Produced by Aerem www.aerem.com

Filters sizes & weights

Filter Sizes Comparison

Starter & Original

Height 100 cm :	260 pleats/10 m = 10 m2
Height 90 cm :	290 pleats / 11.20 m = 10 m2
Height 75 cm :	350 pleats / 13.50 m = 10 m2

Filter (brown & white)	Filter (brown & white)
250 pleats / 9.60 m = 9.60 m2	230 pleats / 8.84 m = 8.84 m2
280 pleats / 10.80 m = 9.72 m2	253 pleats / 9.77 m = 8.79 m2
To be confirmed	300 pleats / 11,57 m = 8.67 m2

Polish Competitor

French Competitor

Patent recommendation: 26 pleats / meter

Filters sizes & weights

c:l+

Waight

Filter Weights Comparison : White Filters			
	ORIGINAL FILTERS	French Competitor	Polish Competitor
Height 100 cm :	10,400 Kg for 260 pleats (= 9,200 Kg for 230 pleats)	To be confirmed	8,40 Kg for 230 pleats
Height 90 cm :	10.402 Kg for 290 pleats	To be confirmed	8,450 Kg for 253 pleats
Height 75 cm :	10,776 Kg for 350 pleats (=9.24 Kg for 300 pleats)	To be confirmed	8,35 Kg for 300 pleats

Mhite Eilt

Filter Weights Comparison : Brown Filters

STARTER & ORIGINAL Brown

Height 100 cm :	AF101 : 9,515 kg (260 pleats) (= 9,140 Kg for 250 pleats) AF111 : 10,34 Kg (260 pleats) (= 9,94 Kg for 250 pleats)
Height 90 cm :	AF901 : 9,580 kg (290 pleats) (= 9,250 Kg for 280 pleats) AF911 : 10,457 Kg (290 pleats) (= 10,10 Kg for 280 pleats)

French Competitor

Polish Competitor

Filter Brown

8,910 Kg for 250 pleats	To be confirmed
9,166 Kg for 280 pleats	To be confirmed

Front face & holes

Perfect holes cutting:

The retention pocket is free of any cutting burr to allow air go through properly

French Competitor

Correct cutting of the holes: Some very small paper particles remain around the hole

Polish Competitor

Holes is not properly cut :

Holes are bad cut, cutting burr decreases the air quantity and limits the correct circulation of paint & air entry in the filter.

Back holes, positioning & quality of the retention pocket

Perfect positioning of holes in the back side of the filter to give more space in the retention pocket to load paint.

Perfect cover of the front holes with the back layer of the filter to avoid the direct migration of the paint particle through the filter directly.

Perfect holes cutting: Retention pocket is clean of all paper rest.

Bad cover of the front holes with the back layer of the filter, some paint particles cannot be filtered and migrate directly through the filter

Polish Competitor

Wrong positioning of the back holes: the bad position of the holes does not leave enough space in the retention pocket to load = smaller loading capacity

Wrong cover of the front holes with the back layer of the filter = some paint particles cannot be filtered and migrate directly through the filter

Bad holes cutting: Retention pocket is not clean of paper rests and collapse quicker

Pleats Regularity

Perfect regularity of the pleats which confers to the filter a high resistance.

French Competitor

Bad pleats regularity: the strength of the filter is also made thanks to the regularity of pleats

No regularity = No strength = High risk of collapse

Bad pleats regularity: the strength of the filter is also made thanks to the regularity of pleats

No regularity = No strength = High risk of collapse

Global matrix of analysis

WEIGHT & SIZES ANALYSIS (40%)

FRONT FACE & HOLES (10%)

10/10	8/10	0/10
-------	------	------

BACK HOLES, POSITIONING & QUALITY OF THE RETENTION POCKET (40%)

Perfect positioning of back	Correct positioning of back	Wrong positioning of back
holes = maximum size of	holes = correct size of	holes = small retention
retention pocket	retention pocket	pocket size
Perfect cover areas : no	Wrong covering areas :	Wrong covering areas :
paint migration possibility	migration of paint particles	migration of paint particles
40/40	20/40	0/40

PLEATS REGULARITY (10%)

Make the right choice, now you have all elements!

ORIGINAL FILTERS